Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
1.
J Neurol Sci ; 459: 122945, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564847

RESUMO

The pathological hallmarks of amyotrophic lateral sclerosis (ALS) are degeneration of the primary motor cortex grey matter (GM) and corticospinal tract (CST) resulting in upper motor neuron (UMN) dysfunction. Conventional brain magnetic resonance imaging (MRI) shows abnormal CST hyperintensity in some UMN-predominant ALS patients (ALS-CST+) but not in others (ALS-CST-). In addition to the CST differences, we aimed to determine whether GM degeneration differs between ALS-CST+ and ALS-CST- patients by cortical thickness (CT), voxel-based morphometry (VBM) and fractal dimension analyses. We hypothesized that MRI multifractal (MF) measures could differentiate between neurologic controls (n = 14) and UMN-predominant ALS patients as well as between patient subgroups (ALS-CST+, n = 21 vs ALS-CST-, n = 27). No significant differences were observed in CT or GM VBM in any brain regions between patients and controls or between ALS subgroups. MF analyses were performed separately on GM of the whole brain, of frontal, parietal, occipital, and temporal lobes as well as of cerebellum. Estimating MF measures D (Q = 0), D (Q = 1), D (Q = 2), Δf, Δα of frontal lobe GM classified neurologic controls, ALS-CST+ and ALS-CST- groups with 98% accuracy and > 95% in F1, recall, precision and specificity scores. Classification accuracy was only 74% when using whole brain MF measures and < 70% for other brain lobes. We demonstrate that MF analysis can distinguish UMN-predominant ALS subgroups based on GM changes, which the more commonly used quantitative approaches of CT and VBM cannot.


Assuntos
Esclerose Amiotrófica Lateral , Substância Cinzenta , Humanos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Esclerose Amiotrófica Lateral/complicações , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Esclerose Amiotrófica Lateral/patologia , Tratos Piramidais/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
2.
Neuroreport ; 35(7): 431-438, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526971

RESUMO

This study aimed to assess the effects of human urinary kallidinogenase (HUK) on motor function outcome and corticospinal tract recovery in patients with acute ischemic stroke (AIS). This study was a randomized, controlled, single-blinded trial. Eighty AIS patients were split into two groups: the HUK and control groups. The HUK group was administered HUK and standard treatment, while the control group received standard treatment only. At admission and discharge, the National Institutes of Health Stroke Scale (NIHSS), Barthel Index (BI) and muscle strength were scored. The primary endpoint was the short-term outcomes of AIS patients under different treatments. The secondary endpoint was the degree of corticospinal tract fiber damage under different treatments. There was a significant improvement in the NIHSS Scale, BI and muscle strength scores in the HUK group compared with controls (Mann-Whitney U test; P  < 0.05). Diffusion tensor tractography classification and intracranial arterial stenosis were independent predictors of short-term recovery by linear regression analysis. The changes in fractional anisotropy (FA) and apparent diffusion coefficient (ADC) decline rate were significantly smaller in the HUK group than in the control group ( P <  0.05). Vascular endothelial growth factor (VEGF) increased significantly after HUK treatment ( P  < 0.05), and the VEGF change was negatively correlated with changes in ADC. HUK is beneficial for the outcome in AIS patients especially in motor function recovery. It may have protective effects on the corticospinal tract which is reflected by the reduction in the FA and ADC decline rates and increased VEGF expression. The study was registered on ClinicalTrials.gov (unique identifier: NCT04102956).


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/complicações , Fator A de Crescimento do Endotélio Vascular , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/complicações , Tratos Piramidais/diagnóstico por imagem , Calicreínas Teciduais
3.
Neuroradiology ; 66(5): 785-796, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478062

RESUMO

PURPOSE: This study aimed to investigate the diagnostic performance of diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) in identifying aberrations in the corticospinal tract (CST), whilst elucidating the relationship between abnormalities of CST and patients' motor function. METHODS: Altogether 21 patients with WHO grade II or grade IV glioma were enrolled and divided into Group 1 and Group 2, according to the presence or absence of preoperative paralysis. DKI and DTI metrics were generated and projected onto the CST. Histograms of the CST along x, y, and z axes were developed based on DKI and DTI metrics, and compared subsequently to determine regions of aberrations on the fibers. The receiver operating characteristic curve was performed to investigate the diagnostic efficacy of DKI and DTI metrics. RESULTS: In Group 1, a significantly lower fractional anisotropy, radial kurtosis and mean kurtosis, and a higher mean diffusivity were found in the ipsilateral CST as compared to the contralateral CST. Significantly higher relative axial diffusivity, relative radial diffusivity, and relative mean diffusivity (rMD) were found in Group 1, as compared to Group 2. The relative volume of ipsilateral CST abnormalities higher than the maximum value of mean kurtosis combined with rMD exhibited the best diagnostic performance in distinguishing dysfunction of CST with an AUC of 0.93. CONCLUSION: DKI is sensitive in detecting subtle changes of CST distal from the tumor. The combination of DKI and DTI is feasible for evaluating the impairment of the CST.


Assuntos
Imagem de Tensor de Difusão , Glioma , Humanos , Imagem de Tensor de Difusão/métodos , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Imagem de Difusão por Ressonância Magnética , Glioma/diagnóstico por imagem , Glioma/patologia , Curva ROC
4.
Artigo em Russo | MEDLINE | ID: mdl-38334736

RESUMO

An urgent problem in modern neurosurgery is resection of brain tumors adjacent to corticospinal tract (CST) due to high risk of its damage and subsequent disability. The main methods for prevention of intraoperative damage to CST are preoperative MR tractography and intraoperative electrophysiological monitoring. Both methods are used in pediatric neurosurgery. We reviewed the PubMed database since 2000 using the following keywords: «tumors of the hemispheres in children¼, «corticospinal tract¼, «MR tractography¼, «intraoperative electrophysiological monitoring¼. We present available literature data on preoperative MR tractography and intraoperative electrophysiological monitoring in children with supratentorial tumors near CST. Algorithm of intraoperative electrophysiological monitoring is often missing or insufficiently described. MR tractography is usually presented in case reports. Researchers do not compare the effectiveness of MR tractography and intraoperative electrophysiological monitoring. In case of MR tractography, a limitation is impossible CST reconstruction in children 2-3 years old. This may be due to unformed pyramidal system in these children. CONCLUSION: Preoperative MR tractography and intraoperative electrophysiological monitoring are valid methods for assessment of CST. Optimal research parameters in children require careful study that will allow objective planning of each stage of preoperative management and increase resection quality for gliomas near CST in children without neurological deterioration.


Assuntos
Neoplasias Encefálicas , Glioma , Criança , Humanos , Pré-Escolar , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Glioma/cirurgia , Procedimentos Neurocirúrgicos/métodos , Monitorização Intraoperatória/métodos
5.
Ann Clin Transl Neurol ; 11(3): 826-836, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263791

RESUMO

OBJECTIVE: Central pontine myelinolysis (CPM) is a rare demyelinating disease that affects the pons and which can cause extreme disabilities such as locked-in syndrome (LIS) in the initial phase. The aim of the study was to describe the evolution over a 12-month period of two patients with CPM causing an initial LIS. METHOD: We retrospectively report the unexpected clinical outcome of these two patients in relation with the anatomical damages documented by brain MRI, associated with diffusion tensor imaging and reconstruction of corticospinal tracts in tractography. The following clinical parameters systematically assessed at 3, 6, 9, and 12 months: muscle testing on 12 key muscles (Medical Research Council), prehension metrics (box and block test and purdue pegboard), and independence for acts of daily living (functional independence measure). RESULTS: Both patients showed a progressive recovery beginning between 2 and 3 months after the onset of symptoms, leading to almost complete autonomy at 12 months (FIM > 110), with motor strength greater than 4/5 in all joint segments (MRC > 50/60). On brain MRI with tractography, CST appeared partially preserved at pons level. INTERPRETATION: The possibility of a near-complete functional recovery at 12 months is important to consider given the ethical issues at stake and the discussions about limiting care that may take place initially. It seems to be the consequence of reversible myelin damage combined with partially preserved neurons. Development of collateral pathways or resolution of conduction block may explain this recovery. MRI comprising DTI and tractography could play a key role in the prognosis of motor recovery.


Assuntos
Síndrome do Encarceramento , Mielinólise Central da Ponte , Humanos , Mielinólise Central da Ponte/diagnóstico por imagem , Mielinólise Central da Ponte/etiologia , Imagem de Tensor de Difusão , Estudos Retrospectivos , Tratos Piramidais/diagnóstico por imagem
7.
Artigo em Inglês | MEDLINE | ID: mdl-38083210

RESUMO

Unilateral brain injuries occurring before at or shortly after full-term can result in hemiplegic cerebral palsy (HCP). HCP affects one side of the body and can be characterized in the hand with measures of weakness and a loss of independent hand control resulting in mirror movements. Hand impairment severity is extremely heterogeneous across individuals with HCP and the neural basis for this variability is unclear. We used diffusion MRI and tractography to investigate the relationship between structural morphology of the supraspinal corticospinal tract (CST) and the severity of two typical hand impairments experienced by individuals with HCP, grasp weakness and mirror movements. Results from nine children with HCP and eight children with typical development show that there is a significant hemispheric association between CST microstructure and hand impairment severity that may be explained by atypical development and fiber distribution of motor pathways. Further analysis in the non-lesioned (dominant) hemisphere shows significant differences for CST termination in the cortex between participants with HCP and those with typical development. These findings suggest that structural disparities at the cellular level in the seemingly unaffected hemisphere after early unilateral brain injury may be the cause of heterogeneous hand impairments seen in this population.Clinical Relevance- Quantitative measurement of the variability in hand function in individuals with HCP is necessary to represent the distinct impairments experienced by each person. Further understanding of the structural neural morphology underlying distal upper extremity motor deficits after early unilateral brain injury will help lead to the development of more specific targeted interventions that increase functional outcomes.


Assuntos
Lesões Encefálicas , Paralisia Cerebral , Transtornos dos Movimentos , Criança , Humanos , Paralisia Cerebral/complicações , Paralisia Cerebral/diagnóstico por imagem , Hemiplegia/complicações , Hemiplegia/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Extremidade Superior
8.
Stroke ; 54(12): 3081-3089, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38011237

RESUMO

BACKGROUND: The indication for mechanical thrombectomy (MT) in stroke patients with large vessel occlusion has been constantly expanded over the past years. Despite remarkable treatment effects at the group level in clinical trials, many patients remain severely disabled even after successful recanalization. A better understanding of this outcome variability will help to improve clinical decision-making on MT in the acute stage. Here, we test whether current outcome models can be refined by integrating information on the preservation of the corticospinal tract as a functionally crucial white matter tract derived from acute perfusion imaging. METHODS: We retrospectively analyzed 162 patients with stroke and large vessel occlusion of the anterior circulation who were admitted to the University Medical Center Lübeck between 2014 and 2020 and underwent MT. The ischemic core was defined as fully automatized based on the acute computed tomography perfusion with cerebral blood volume data using outlier detection and clustering algorithms. Normative whole-brain structural connectivity data were used to infer whether the corticospinal tract was affected by the ischemic core or preserved. Ordinal logistic regression models were used to correlate this information with the modified Rankin Scale after 90 days. RESULTS: The preservation of the corticospinal tract was associated with a reduced risk of a worse functional outcome in large vessel occlusion-stroke patients undergoing MT, with an odds ratio of 0.28 (95% CI, 0.15-0.53). This association was still significant after adjusting for multiple confounding covariables, such as age, lesion load, initial symptom severity, sex, stroke side, and recanalization status. CONCLUSIONS: A preinterventional computed tomography perfusion-based surrogate of corticospinal tract preservation or disconnectivity is strongly associated with functional outcomes after MT. If validated in independent samples this concept could serve as a novel tool to improve current outcome models to better understand intersubject variability after MT in large vessel occlusion stroke.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/cirurgia , Estudos Retrospectivos , Tratos Piramidais/diagnóstico por imagem , Resultado do Tratamento , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Trombectomia/métodos , Imagem de Perfusão/métodos
9.
Acta Neurochir (Wien) ; 165(12): 4227-4234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917380

RESUMO

BACKGROUND: Gliomas have infiltrative nature and tumor volume has direct prognostic value. Optimal resection limits delineated by high-frequency monopolar stimulation with multipulse short train technique is still a matter of debate for safe surgery without (or with acceptable) neurological deficits. It is also an enigma whether the same cut-off values are valid for high and low grades. We aimed to analyze the value of motor mapping/monitoring findings on postoperative motor outcome in diffuse glioma surgery. METHODS: Patients who were operated on due to glioma with intraoperative neuromonitorization at our institution between 2017 and 2021 were analyzed. Demographic information, pre- and post-operative neurological deficit, magnetic resonance images, resection rates, and motor evoked potential (MEP) findings were analyzed. RESULTS: Eighty-seven patients of whom 55 had high-grade tumors were included in the study. Total/near-total resection was achieved in 85%. Subcortical motor threshold (ScMTh) from resection cavity to the corticospinal tract was ≤ 2mA in 17; 3 mA in 14; 4 mA in 6; 5 mA in 7, and ≥5mA in 50 patients. On the 6th month examination, six patients (5 with high-grade tumor) had motor deficits. These patients had changes in MEP that exceeded critical threshold during monitoring. Receiver operating characteristic analysis revealed 2.5 mA ScMTh as the cut-off point for limb paresis after awakening and 6 months for the groups. CONCLUSIONS: Subcortical mapping with MEP monitoring helps to achieve safe wider resection. The optimal safe limit for SCMTh was determined as 2.5 mA. Provided that safe threshold values are maintained in MEP, surgeon may force the functional limits by lowering the SCMTh to 1 mA, especially in low-grade gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Monitorização Intraoperatória/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/cirurgia , Potencial Evocado Motor/fisiologia , Mapeamento Encefálico/métodos
10.
Hum Brain Mapp ; 44(17): 6055-6073, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37792280

RESUMO

The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body. The CST exhibits a somatotopic organization, which means that the motor neurons that control specific body parts are arranged in order within the CST. Diffusion magnetic resonance imaging (MRI) tractography is increasingly used to study the anatomy of the CST. However, despite many advances in tractography algorithms over the past decade, modern, state-of-the-art methods still face challenges. In this study, we compare the performance of six widely used tractography methods for reconstructing the CST and its somatotopic organization. These methods include constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, unscented Kalman filter (UKF) tractography methods including multi-fiber (UKF2T) and single-fiber (UKF1T) models, the generalized q-sampling imaging (GQI) based deterministic tractography method, and the TractSeg method. We investigate CST somatotopy by dividing the CST into four subdivisions per hemisphere that originate in the leg, trunk, hand, and face areas of the primary motor cortex. A quantitative and visual comparison is performed using diffusion MRI data (N = 100 subjects) from the Human Connectome Project. Quantitative evaluations include the reconstruction rate of the eight anatomical subdivisions, the percentage of streamlines in each subdivision, and the coverage of the white matter-gray matter (WM-GM) interface. CST somatotopy is further evaluated by comparing the percentage of streamlines in each subdivision to the cortical volumes for the leg, trunk, hand, and face areas. Overall, UKF2T has the highest reconstruction rate and cortical coverage. It is the only method with a significant positive correlation between the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex. However, our experimental results show that all compared tractography methods are biased toward generating many trunk streamlines (ranging from 35.10% to 71.66% of total streamlines across methods). Furthermore, the coverage of the WM-GM interface in the largest motor area (face) is generally low (under 40%) for all compared tractography methods. Different tractography methods give conflicting results regarding the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex, indicating that there is generally no clear relationship, and that reconstruction of CST somatotopy is still a large challenge. Overall, we conclude that while current tractography methods have made progress toward the well-known challenge of improving the reconstruction of the lateral projections of the CST, the overall problem of performing a comprehensive CST reconstruction, including clinically important projections in the lateral (hand and face areas) and medial portions (leg area), remains an important challenge for diffusion MRI tractography.


Assuntos
Neoplasias Encefálicas , Imagem de Tensor de Difusão , Humanos , Imagem de Tensor de Difusão/métodos , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/cirurgia
11.
Neuroimage Clin ; 40: 103521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37857233

RESUMO

OBJECTIVE: Our study aimed to investigate the shape and diffusion properties of the corticospinal tract (CST) in patients with insular incidental and symptomatic low-grade gliomas (LGGs), especially those in the incidental group, and evaluate their association with post-surgical motor function. METHODS: We performed automatic fiber tracking on 41 LGG patients, comparing macroscopic shape and microscopic diffusion properties of CST between ipsilateral and contralateral tracts in both incidental and symptomatic groups. A correlation analysis was conducted between properties of CST and post-operative motor strength grades. RESULTS: In the incidental group, no significant differences in mean diffusion properties were found between bilateral CST. While decreased anisotropy of the CST around the superior limiting sulcus and increased axial diffusivity of the CST near the midbrain level were noted, there was no significant correlation between pre-operative diffusion metrics and post-operative motor strength. In comparison, we found significant correlations between the elongation of the affected CST in the preoperative scans and post-operative motor strength in short-term and long-term follow ups (p = 1.810 × 10-4 and p = 9.560 × 10-4, respectively). CONCLUSIONS: We found a significant correlation between CST shape measures and post-operative motor function outcomes in patients with incidental insular LGGs. CST morphology shows promise as a potential prognostic factor for identifying functional deficits in this patient population.


Assuntos
Imagem de Tensor de Difusão , Glioma , Humanos , Tratos Piramidais/diagnóstico por imagem , Glioma/diagnóstico por imagem , Glioma/cirurgia , Imagem de Difusão por Ressonância Magnética , Mesencéfalo
12.
World Neurosurg ; 180: e468-e473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37774789

RESUMO

BACKGROUND: Although tractography-guided surgery is used by many surgeons, there is controversy in the published literature as it relates to its clinical utility. Here we adopted a survey-based approach with the goal of attaining a broader view of how tractography influence preoperative planning in a sampling of practicing neurosurgeons. METHODS: Three cases were prepared where the presence of a tumor distorted the optic radiation (case 1), arcuate fasciculus (case 2), and corticospinal tract (case 3). This survey was administered at the Medtronic Cranial Consortium attended by 20 practicing neurosurgeons. To avoid commercial bias, we used both the Brainlab and Medtronic platform to compute tractography. Each participant is asked to vote on a surgical trajectory before and after seeing the tractography images, as well as whether tractography added value in validating their surgical approach. RESULTS: In the 3 cases surveyed, 16%-44% of the surgeons changed the surgical corridor selected after seeing the tractography images. The most common finding associated with a change in surgical corridor involved intersection of the surgical corridor with visualized tracts. Consistently, >80% of the surgeons surveyed felt that tractography added value in their surgical planning. CONCLUSIONS: The clinical utility of tractography in preoperative planning varies as a function of surgeon and the tumor anatomy, with >80% of the participating surgeons believing that tractography added value in preoperative surgical planning.


Assuntos
Neoplasias Encefálicas , Imagem de Tensor de Difusão , Humanos , Imagem de Tensor de Difusão/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Neuronavegação/métodos , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/cirurgia , Tratos Piramidais/patologia , Espectroscopia de Ressonância Magnética
13.
Hum Brain Mapp ; 44(16): 5504-5513, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37608610

RESUMO

It is well documented that attention-deficit hyperactivity disorder (ADHD) often presents with co-occurring motor difficulties. However, little is known about the biological mechanisms that explain compromised motor skills in approximately half of those with ADHD. To provide insight into the neurobiological basis of poor motor outcomes in ADHD, this study profiled the development of white matter organization within the cortico-spinal tract (CST) in adolescents with ADHD with and without co-occurring motor problems, as well as non-ADHD control children with and without motor problems. Participants were 60 children aged 9-14 years, 27 with a history of ADHD and 33 controls. All underwent high-angular resolution diffusion MRI data at up to three time points (115 in scans total). We screened for motor impairment in all participants at the third time point (≈14 years) using the Developmental Coordination Disorder Questionnaire (DCD-Q). Following pre-processing of diffusion MRI scans, fixel-based analysis was performed, and the bilateral CST was delineated using TractSeg. Mean fiber density (FD) and fiber cross-section (FC) were extracted for each tract at each time-point. To investigate longitudinal trajectories of fiber development, linear mixed models were performed separately for the left and right CST, controlling for nuisance variables. To examine possible variations in fiber development between groups, we tested whether the inclusion of group and the interaction between age and group improved model fit. At ≈10 years, those with ADHD presented with lower FD within the bilateral CST relative to controls, irrespective of their prospective motor status. While these microstructural abnormalities persisted into adolescence for individuals with ADHD and co-occurring motor problems, they resolved for those with ADHD alone. Divergent maturational pathways of motor networks (i.e., the CST) may, at least partly, explain motor problems individuals with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Substância Branca , Criança , Humanos , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Estudos Prospectivos , Encéfalo , Substância Branca/diagnóstico por imagem
14.
Medicine (Baltimore) ; 102(32): e34618, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565876

RESUMO

BACKGROUND: To investigate the efficacy of acupuncture in improving motor dysfunction after ischemic stroke (IS) and to investigate the effect of acupuncture on corticospinal tract (CST) remodeling using diffusion tensor imaging. METHODS: Published literature on the effect of acupuncture on CST remodeling after IS using diffusion tensor imaging in the form of randomized controlled trials (RCTs) were systematically retrieved and screened from Cochrane Library, Web of Science, PubMed, Embase, CNKI, CBM, VIP, and Wanfang databases from inception to December 2022. The methodological quality of the included studies was critically and independently evaluated by 2 reviewers using the Cochrane Risk of Bias Assessment Tool for RCTs. The correlated data were extracted using the pre-designed form, and all analyses were performed using Reviewer Manager version 5.4. RESULTS: Eleven eligible RCTs involving 459 patients were eventually included. The combined evidence results showed that the acupuncture group significantly improved patients' National Institute of Health stroke scale, Fugl-Meyer Assessment Scale, and Barthel index compared with conventional medical treatment. The acupuncture group significantly promoted remodeling of the CST, as reflected by an increase in fractional anisotropy (FA) throughout the CST [MD = 0.04, 95% CI (0.02, 0.07), P = .001], and in addition, subgroup analysis showed that the acupuncture group significantly improved FA in the infarct area compared with conventional medical treatment at around 4 weeks [MD = 0.04, 95% CI (0.02, 0.06), P = .0002] and FA of the affected cerebral peduncle [MD = 0.03, 95% CI (0.00, 0.07), P = .02]. Also, compared with conventional medical treatment, the acupuncture group significantly increased average diffusion coefficient of the affected cerebral peduncle [MD = -0.21, 95% CI (-0.28, -0.13), P < .00001]. CONCLUSION: The results of the meta-analysis suggest that acupuncture therapy can improve the clinical manifestations of motor dysfunction in patients after IS and advance a possibly beneficial effect on CST remodeling. However, due to the number and quality of eligible studies, these findings need to be further validated in more standardized, rigorous, high-quality clinical trials.


Assuntos
Terapia por Acupuntura , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Imagem de Tensor de Difusão/métodos , Tratos Piramidais/diagnóstico por imagem , Terapia por Acupuntura/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , AVC Isquêmico/complicações , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/terapia
15.
Ann Neurol ; 94(4): 785-797, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37402647

RESUMO

OBJECTIVE: Although ample evidence highlights that the ipsilesional corticospinal tract (CST) plays a crucial role in motor recovery after stroke, studies on cortico-cortical motor connections remain scarce and provide inconclusive results. Given their unique potential to serve as structural reserve enabling motor network reorganization, the question arises whether cortico-cortical connections may facilitate motor control depending on CST damage. METHODS: Diffusion spectrum imaging (DSI) and a novel compartment-wise analysis approach were used to quantify structural connectivity between bilateral cortical core motor regions in chronic stroke patients. Basal and complex motor control were differentially assessed. RESULTS: Both basal and complex motor performance were correlated with structural connectivity between bilateral premotor areas and ipsilesional primary motor cortex (M1) as well as interhemispheric M1 to M1 connectivity. Whereas complex motor skills depended on CST integrity, a strong association between M1 to M1 connectivity and basal motor control was observed independent of CST integrity especially in patients who underwent substantial motor recovery. Harnessing the informational wealth of cortico-cortical connectivity facilitated the explanation of both basal and complex motor control. INTERPRETATION: We demonstrate for the first time that distinct aspects of cortical structural reserve enable basal and complex motor control after stroke. In particular, recovery of basal motor control may be supported via an alternative route through contralesional M1 and non-crossing fibers of the contralesional CST. Our findings help to explain previous conflicting interpretations regarding the functional role of the contralesional M1 and highlight the potential of cortico-cortical structural connectivity as a future biomarker for motor recovery post-stroke. ANN NEUROL 2023;94:785-797.


Assuntos
Imageamento por Ressonância Magnética , Acidente Vascular Cerebral , Humanos , Imageamento por Ressonância Magnética/métodos , Lateralidade Funcional , Acidente Vascular Cerebral/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Biomarcadores , Recuperação de Função Fisiológica
16.
Stroke ; 54(9): 2438-2441, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37465999

RESUMO

BACKGROUND: Integrity of the corticospinal tract (CST) is an important biomarker for upper limb motor function following stroke. However, when structurally compromised, other tracts may become relevant for compensation or recovery of function. METHODS: We used the ENIGMA Stroke Recovery data set, a multicenter, retrospective, and cross-sectional collection of patients with upper limb impairment during the chronic phase of stroke to test the relevance of tracts in individuals with less and more severe (laterality index of CST fractional anisotropy ≥0.25) CST damage in an observational study design. White matter integrity was quantified using fractional anisotropy for the CST, the superior longitudinal fascicle, and the callosal fibers interconnecting the primary motor cortices between hemispheres. Optic radiations served as a control tract as they have no a priori relevance for the motor system. Pearson correlation was used for testing correlation with upper limb motor function (Fugl-Meyer upper extremity). RESULTS: From 1235 available data sets, 166 were selected (by imaging, Fugl-Meyer upper extremity, covariates, stroke location, and stage) for analyses. Only individuals with severe CST damage showed a positive association of fractional anisotropy in both callosal fibers interconnecting the primary motor cortices (r[21]=0.49; P=0.025) and superior longitudinal fascicle (r[21]=0.51; P=0.018) with Fugl-Meyer upper extremity. CONCLUSIONS: Our data support the notion that individuals with more severe damage of the CST depend on residual pathways for achieving better upper limb outcome than those with less affected CST.


Assuntos
Acidente Vascular Cerebral , Substância Branca , Humanos , Estudos Transversais , Estudos Retrospectivos , Substância Branca/diagnóstico por imagem , Extremidade Superior , Tratos Piramidais/diagnóstico por imagem , Recuperação de Função Fisiológica
17.
Stroke ; 54(7): 1854-1862, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37272392

RESUMO

BACKGROUND: The structural integrity of the corticospinal tract (CST) is an important biomarker of poststroke upper limb recovery. Injured CST undergoes Wallerian degeneration rostrocaudally during the first few months. However, there is no standardized measurement of the structural integrity of the CST. This study aimed to determine the measurement accuracy of the structural integrity of the CST. METHODS: This cross-sectional study included 50 consecutive patients with middle cerebral artery stroke who underwent diffusion tensor imaging upon transfer from the acute stroke unit to the inpatient rehabilitation facility (2018-2022). We evaluated hemiplegic upper limb function using Shoulder Abduction and Finger Extension (SAFE) scores. Fractional anisotropy values representing the structural integrity of the CST were evaluated using 4 region of interest-based and 2 tract-based measurements, including the posterior limb of internal capsule, cerebral peduncle, pons, pontomedullary junction, entire CST, and CST in the brainstem. Multivariate linear regression models and the area under the curve (AUC) were used to determine measurement accuracy for hemiplegic upper limb function. RESULTS: The structural integrity of the CST at the pontomedullary junction showed the highest explanatory power, followed by the entire CST, in the multivariate linear regression models (adjusted R2=0.459 and 0.425, respectively). The structural integrity of the CST at the pontomedullary junction also showed the highest AUC, followed by the entire CST, in discriminating patients with a SAFE score of <8 or 5 from those with SAFE ≥8 or 5 (SAFE <8: AUC, 0.90 [95% CI, 0.80-1.00]; AUC, 0.83 [0.66-0.99]; SAFE <5: AUC, 0.87 [0.77-0.96]; AUC, 0.83, [0.72-0.95], respectively). CONCLUSIONS: The structural integrity of the CST measured at the pontomedullary junction or entire CST demonstrated the highest accuracy for hemiplegic upper limb function in the subacute phase of stroke.


Assuntos
Imagem de Tensor de Difusão , Acidente Vascular Cerebral , Humanos , Imagem de Tensor de Difusão/métodos , Estudos Transversais , Hemiplegia/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Extremidade Superior , Anisotropia
18.
Neurorehabil Neural Repair ; 37(8): 554-563, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269119

RESUMO

BACKGROUND: The cerebellum plays a crucial role in functional movement by influencing sensorimotor coordination and learning. However, the effects of cortico-cerebellar connectivity on the recovery of upper extremity motor function after stroke have not been investigated. We hypothesized that the integrity of the cortico-cerebellar connections would be reduced in patients with a subacute middle cerebral artery (MCA) stroke, and that this reduction may help to predict chronic upper extremity motor function. METHODS: We retrospectively analyzed the diffusion-tensor imaging of 25 patients with a subacute MCA stroke (mean age: 62.2 ± 2.7 years; 14 females) and 25 age- and sex-matched healthy controls. We evaluated the microstructural integrity of the corticospinal tract (CST), dentatothalamocortical tract (DTCT), and corticopontocerebellar tract (CPCT). Furthermore, we created linear regression models to predict chronic upper extremity motor function based on the structural integrity of each tract. RESULTS: In stroke patients, the affected DTCT and CST showed significantly impaired structural integrity compared to unaffected tracts and the tracts in controls. When all models were compared, the model that used the fractional anisotropy (FA) asymmetry indices of CST and DTCT as independent variables best predicted chronic upper extremity motor function (R2 = .506, P = .001). The extent of structural integrity of the CPCT did not significantly differ between hemispheres or groups and was not predictive of motor function. CONCLUSIONS: We found evidence that microstructural integrity of the DTCT in the subacute phase of an MCA stroke helped to predict chronic upper extremity motor function, independent of CST status.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Artéria Cerebral Média , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/diagnóstico por imagem
19.
Hum Brain Mapp ; 44(12): 4439-4451, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318767

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for advanced Parkinson's disease. Stimulation of the hyperdirect pathway (HDP) may mediate the beneficial effects, whereas stimulation of the corticospinal tract (CST) mediates capsular side effects. The study's objective was to suggest stimulation parameters based on the activation of the HDP and CST. This retrospective study included 20 Parkinson's disease patients with bilateral STN DBS. Patient-specific whole-brain probabilistic tractography was performed to extract the HDP and CST. Stimulation parameters from monopolar reviews were used to estimate volumes of tissue activated and to determine the streamlines of the pathways inside these volumes. The activated streamlines were related to the clinical observations. Two models were computed, one for the HDP to estimate effect thresholds and one for the CST to estimate capsular side effect thresholds. In a leave-one-subject-out cross-validation, the models were used to suggest stimulation parameters. The models indicated an activation of 50% of the HDP at effect threshold, and 4% of the CST at capsular side effect threshold. The suggestions for best and worst levels were significantly better than random suggestions. Finally, we compared the suggested stimulation thresholds with those from the monopolar reviews. The median suggestion errors for the effect threshold and side effect threshold were 1 and 1.5 mA, respectively. Our stimulation models of the HDP and CST suggested STN DBS settings. Prospective clinical studies are warranted to optimize tract-guided DBS programming. Together with other modalities, these may allow for assisted STN DBS programming.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/fisiologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Tratos Piramidais/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos
20.
J Digit Imaging ; 36(5): 1974-1986, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37340196

RESUMO

It remains unclear whether tractography of pyramidal tracts is correlated with the intraoperative direct electrical subcortical stimulation (DESS), and brain shift further complicates the issue. The objective of this research is to quantitatively verify the correlation between optimized tractography (OT) of pyramidal tracts after brain shift compensation and DESS during brain tumor surgery. OT was performed for 20 patients with lesions in proximity to the pyramidal tracts based on preoperative diffusion-weighted magnetic resonance imaging. During surgery, tumor resection was guided by DESS. A total of 168 positive stimulation points and their corresponding stimulation intensity thresholds were recorded. Using the brain shift compensation algorithm based on hierarchical B-spline grids combined with a Gaussian resolution pyramid, we warped the preoperative pyramidal tract models and used receiver operating characteristic (ROC) curves to investigate the reliability of our brain shift compensation method based on anatomic landmarks. Additionally, the minimum distance between the DESS points and warped OT (wOT) model was measured and correlated with DESS intensity threshold. Brain shift compensation was achieved in all cases, and the area under the ROC curve was 0.96 in the registration accuracy analysis. The minimum distance between the DESS points and the wOT model was found to have a significantly high correlation with the DESS stimulation intensity threshold (r = 0.87, P < 0.001), with a linear regression coefficient of 0.96. Our OT method can provide comprehensive and accurate visualization of the pyramidal tracts for neurosurgical navigation and was quantitatively verified by intraoperative DESS after brain shift compensation.


Assuntos
Neoplasias Encefálicas , Tratos Piramidais , Humanos , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Tratos Piramidais/fisiologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Imagem de Tensor de Difusão/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...